ÇILGIN_MATEMATİKÇİNİzzzz - Olasılık

 
Ana Sayfa
Örnek Alt Sayfa
Fraktallar
Kordinat Sisteminde Simetri
Histogram
Üslü sayılar
Olasılık
Kareköklü Sayılar
Standart Sapma
Üçgenler
Pisagor Bağıntısı
Sayı Örüntüleri
Özdeşlikler
Çarpanlara Ayırma
Kombinasyon
Denklemler
Üçgenlerde Eşlik ve Benzerlikler
Prizmalar
Piramitler,Koni,Küre
Perspektif
Geometrik Cisimlerin ara Kesitleri
Çok Küplüler
Geometrik Cisimlerde Simetri
Eşitsizlikler
Eşitsizlik Grafikleri
Eğim
Trigonometri
   
 

8. Sınıf Matematik Olasılık Konu Anlatımı

 

 

A. TANIM

Olasılık, sonucu kesin olmayan olaylarla ilgilenir. Bir zar atıldığında üst yüze gelen noktaların sayısının ne olacağı gibi şans oyunlarıyla ilgilenen olasılık teorisi günümüzde sosyal olaylar ve bilimsel çalışmalarda da kullanılmaktadır.

 

 

B. OLASILIK TERİMLERİ

Bir madeni para havaya atıldığında yazı mı ya da tura mı geleceğini (v.b) tesbit etme işlemine deney denir.

Bir deneyin her bir görüntüsüne (çıktısına) sonuç denir.

Bir deneyin bütün sonuçlarını eleman kabul eden kümeye örnek uzay denir.

Bir örnek uzayın her bir alt kümesine olay denir.

Örnek uzayın alt kümelerinden olan boş kümeye imkansız (olanaksız) olay denir.

Örnek uzayın bütün elemanlarını içeren alt kümesine kesin olay denir.

 

A ve B, E örnek uzayına ait iki olay olsun.

Ç B = Æ

ise, A ve B olayına ayrık olay denir.

 

 

C. BİR OLAYIN OLASILIĞI

Örnek Uzayı “E”, bir olayı “A” ve A olayının olasılığını da O(A) ile gösterirsek;

 

ile gösterilir.

 

  • Bir olayın olasılığı 0 ile 1 arasındadır.

    £ O(A) £ 1 dir.

  • O(A) = 0 ise A olayının gerçekleşmesi mümkün değil demektir. (İmkansız olayın olasılığı 0 dır.)

  • O(A) = 1 ise A olayı kesinlikle gerçeleşecek demektir. (Kesin olayın olasılığı 1 dir.)

  • O(A), A olayının olma olasılığı,

    O(Aı), A olayının olmama olasılığı olmak üzere,

    O(A) + O(Aı) = 1, yani bir olay ya olur veya olmaz demektir. Bu ifadeyi
    O(A) = 1 – O(Aı) şeklinde de düşünebiliriz.

 

  • Ì B ise O(A) £ O(B) dir.

  • n, paranın atılma sayısını veya para sayısını göstermek üzere, örnek uzay 2n dir.

  • n, zarın atılma sayısını veya zar sayısını göstermek üzere, örnek uzay 6n dir.

 

 

 

D. AYRIK İKİ OLAYIN BİRLEŞİMİNİN (A VEYA B OLAYININ)OLASILIĞI

Ç B = Æ ise,

O(A È B) = O(A) + O(B) dir.

 

 

 

E. AYRIK OLMAYAN İKİ OLAYIN BİRLEŞİMİNİN (A VEYA B OLAYININ) 
    OLASILIĞI

O(A È B) = O(A) + O(B) – O(A Ç B) dir.

 

 

 

F. BAĞIMSIZ OLAYLAR

Bir olayın elde edilmesi, diğer olayın elde edilmesini etkilemiyorsa bu iki olaya bağımsız olaylar denir.

A ve B bağımsız iki olay olsun. A nın ve B nin gerçekleşme olasılığı :

O(A Ç B) = O(A) . O(B) dir

 
 
Bugün 8 ziyaretçi (11 klik) kişi burdaydı!
Bu web sitesi ücretsiz olarak Bedava-Sitem.com ile oluşturulmuştur. Siz de kendi web sitenizi kurmak ister misiniz?
Ücretsiz kaydol